
EnRUPTEnRUPT
Sean OSean O’’NeilNeil

VEST CorporationVEST Corporation

#define w 64 // or 32
#define s H // or 8
unsigned int##w r, d[2], x[H], f, i;

for (i=0; i<2*s; i++, r++)
 xr+2^=f=rotr(2*xr^1^xr+4^dr^r,w/4)*9, dr^=f^xr;

d1^=input_word;

1. EnRUPT is the simplest of the SHA-3 submissions.

2. EnRUPT/H is possibly the most area efficient submission.

3. EnRUPT/H is one of the fastest submissions at 10-20 CPB.

4. Stream hashing offers variety. No block chaining required.

5. EnRUPT was submitted with a tunable security parameter.

6. The published preimage attack with 2960 time*memory
complexity does not invalidate EnRUPT security claims.

7. Collisions were found for ïrRUPT/4 (EnRUPT with s=4).

8. The same attack does not apply to ïrRUPT/5.

9. If allowed, we recommend tuning the security parameter up
to s=8 or up to s=H for higher (“provable”) security.

Key Points

Primary Design Goals

1. Simplicity of every aspect = Kerkhoff #6

2. Scalability = Variable state and word size

3. Flexibility = Stream cipher / hash

4. Error-proof = Easy to implement & debug

ADD-XOR-ROL FamilyADD-XOR-ROL Family

TEA: 10/∞

Li Ri

Li+1 Ri+1

>>5

<<4

D

0x9E3779B9

XTEA: 9/19

K2i+1

K2i Li Ri

Li+1 Ri+1

<<4

D

i&1?0x9E3779B9:0

>>5

KD>>((D&1)*11)

xi–1 xi+1

<<4

D=([i/xw]+1)*0x9E3779B9

>>5

Ki⊕(D>>2)

<<2 >>3

xi

XXTEA: 10/21

Encrypts blocks of any size
No serious attacks

=> A good starting point…

EnRUPTx2 inEnRUPTx2 in stream modes stream modes
d0 d1 xr+4 xr+5xr+2 xr+3xr xr+1 r

dr2ïr2

… …

xr+2 xr+3d0 d1

oi

MixingLoading

Output

pi

H words state

d1

d1

 ïr ïrRUPTx2: HashRUPTx2: Hash

<< 1

r

dr

xr⊕1

>>> w/4

<< 3

xr+2

pr/2s hr/2s

xr+2^=f=rotr(2*xr^1^xr+4^dr&1^r,8)*9; (d1^=p^f^xr);

xr

Input processing
every 2s rounds

Hash output after
n = 2sH rounds

w = 32 or 64
s = 8 or H

xr+2

mcRUPTx2: MAC,mcRUPTx2: MAC, HMACHMAC

<< 1

r

dr

xr⊕1

>>> w/4

<< 3

xr+2

pr/2s hr/2s

xr+2^=f=rotr(2*xr^1^xr+4^dr&1^r,8)*9; (d1^=p^f^xr);

xr

Processing after
n = 2sH rounds
every 2s rounds

MAC output after
n = 2sH rounds

w = 32 or 64
s = 8 or H

xr+2

 aeRUPTx2: AE stream cipheraeRUPTx2: AE stream cipher

<< 1

r

dr

xr⊕1

>>> w/4

<< 3

xr+2

pr/2s cr/2s

xr+2^=f=rotr(2*xr^1^xr+4^dr&1^r,8)*9; c=(d1^=p^f^xr);

xr

Encryption after
n = 2sH rounds
every 2s rounds

MAC output after
n = 2sH rounds

w = 32 or 64
s = 8 or H

xr+2

 RUPTx2: Stream cipher/PRFRUPTx2: Stream cipher/PRF

<< 1

r

dr

xr⊕1

>>> w/4

<< 3

xr+2

pr/2s cr/2s

xr+2^=f=rotr(2*xr^1^xr+4^dr&1^r,8)*9; c=p^(d1^=f^xr);

xr

Encryption after
n = 2sH rounds
every 2s rounds

w = 32 or 64
s = 8 or H

xr+2

ïrRUPTx2 ïrRUPTx2 in in pseudocodepseudocode

ïrRUPTwx2-h /s

input m bits of message p and location for h bits of hash o ;

set pm/w = (1 << (¬m & (w–1))) | pm/w & (–1 << (¬m & (w–1)));

set H = (2*h+2*w–1)/w/2*2;

set x0..H–1 = d0..P–1 = 0;

for i = 0 to (m+w–1)/w execute ïr2s(pi), set i += 1;

execute ïr2s(h);

for i = 0 to H–1 execute ïr2s(0), set i += 1;

for i = 0 to (h–1)/w set oi = ïr2s(0), set i += 1;

Return h bits of o as the final hash value.

ïr2s(p) execute (ïr1) 2*s times; set d1!=p; return d1;

(ïr1)
set x(r+2)%H != f = rotr(2*x(r!1)%H ! x(r+4)%H ! dr&1 ! r, w/4)*9,

set dr&1 != f ! xr, set r += 1;

A complete ïrRUPTx2 implementation.

Recent Collision CryptanalysisRecent Collision Cryptanalysis

679634589543498453408363318273227182137ïrRUPT64-384
679634589543498453408363318273227182137ïrRUPT64-512

Indesteege+Preneel Attack:
11037ïrRUPT64-256

39ïrRUPT64-384
38ïrRUPT64-512

Generic Linearized Search:
634

15

679589543498453408363318273227182137ïrRUPT64-256

16141312111098765s=4Complexity, bits

Generic Linearized Search:
3192982772552342131921711501291078665ïrRUPT32-128
3192982772552342131921711501291078665ïrRUPT32-160
3192982772552342131921711501291078665ïrRUPT32-192

Indesteege+Preneel Attack:
36ïrRUPT32-128
38ïrRUPT32-160
38ïrRUPT32-192

15 16141312111098765s=4Complexity, bits

n

broken unbroken provably resistant to
linearized collisions

s=Hmin
proposed s

Linearized Collision Attacks:

n

could be attacked

Recent Preimage CryptanalysisRecent Preimage Cryptanalysis

2480

Attack Memory

2480ïrRUPT64x2-512/4

Attack TimeHash

Meet-in-the-middle attacks are natural to stream hashes. Such high
attack complexity using memory the size of the universe does not
invalidate EnRUPT’s security claims. Parallel brute-force is
approximately 2448 times cheaper. If 2h time * 2h memory attack resistance
is required, the H parameter should be doubled.

Currently, the fastest unbroken variant is EnRUPTx2/5. There are also no
attacks against stream processing with s=2 in any of the keyed modes
when s≥5 is used for the more sensitive initialisation and finalisation.

If NIST allows tuning security parameters up and not only down, we
propose a choice between the more secure s=H and the faster s=8 for
EnRUPT64x2 and between the more secure s=H and the faster s=H/2+1
for EnRUPT32x2. The following updated performance figures are for s=H.

PerformancePerformance

145-152

113-120

81-88

Memory
Bytes

20524003.250117.5ïrRUPT64x2-512/16

15393004.87587.6ïrRUPT64x2-384/12

10262006.410057.8ïrRUPT64x2-256/8

64-bit
Intel C
CPB

32-bit
SSE
CPB

8-bit
CPU
CPB

ASIC
Speed
Gbps

ASIC
Freq
MHz

ASIC
Area
KGE

Hash

Even with s=16, EnRUPT is one of the
fastest SHA-3 submissions at 20 CPB.

DisadvantagesDisadvantages
1. Not the fastest: Some of the speed was traded in favor of

simplicity and flexibility (although hardware efficiency was
not sacrificed and it could also turn out to be the fastest
algorithm on 8-bit and 16-bit CPUs). Limited parallelisation.

2. Appears too simple to be secure: Appearances are deceiving,
but the initial resistance of the professionally paranoid
cryptologists to simplicity is expected and understandable.

3. Not a traditional design: Security of stream hashing is
largely under-researched. Meet-in-the-middle attacks are a
concern, while not being a threat to block hashes. However,
MITM attacks are naturally managed by the large state
required of a stream hash, which is also naturally resistant
to other “odd” or even “exotic” attacks such as length
extension, herding and multiple collision/preimage attacks.

AdvantagesAdvantages
1. The simplest submission: Can be easily memorized. No constants, no s-

boxes, no permutations. Lower implementation/debugging cost.
Minimal structure: Less opportunities for the attacker means faster
growth of trust as the algorithm remains unbroken. It is harder to
expect a new attack or a new optimization.

2. 8-bit CPU, 16-bit CPU and Web friendly: Minimal RAM and code, no
ROM, no rotations, no complex operations. Network router friendly:
Minimal latency. Hashes 1 word at a time. Input block size is often
omitted from the performance figures as it is expected to be always
present. It is only one word in EnRUPT, and it does not need storage.

3. FPGA/ASIC friendly: Possibly the most area efficient submission.
According to the hardware guys it is more efficient than SHA-2, MD6,
Grøstl, Blake, Whirlpool, AES s-box based hashes… Faster than SHA-2.
RFID friendly: Fits in under 500 gates.

4. Not a block hash: No additional block chaining mode introducing
potential security flaws is required. Adds variety to the standards.

ThankThank you!you!

www.enrupt.com
Sean OSean O’’NeilNeil

Special thanks to: Luca Henzen, Karsten Nohl,
Sebastiaan Intesteege, Bart Preneel, Dmitry Khovratovich, Ivica Nicolić

http://www.enrupt.com

